English

Find the adjoint of the following matrices : [2-335] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`

Sum

Solution

Let A = `[(2, -3),(3, 5)]`

Here,
a11 = 2
∴ M11 = 5 and A11 = (– 1)1+1 (5) = 5
a12 = – 3

∴ M12 = 3 and A12 = (– 1)1+2 (3) = – 3
a21 = 3

∴ M21 = – 3 and A21 = (– 1)2+1 (– 3) = 3
a22 = 5
∴ M22 = 2 and A22 = (– 1)2+2 (2) = 2
∴ The matrix of the co-factors is

[Aij]2x2 = `[("A"_11, "A"_12),("A"_21, "A"_22)] = [(5, -3),(3, 2)]`

Now, adj A = `["A"_"ij"]_(2xx2)^"T" = [(5, 3),(-3, 2)]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.5 [Page 72]

RELATED QUESTIONS

The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.


If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations


The cost of 2 books, 6 notebooks and 3 pens is  Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×