Advertisements
Advertisements
Question
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A
Solution
Given that: A = `[(0, -1, 2),(4, 3, -4)]`, B = `[(4, 0),(1, 3),(2, 6)]`
A' = `[(0, -1, 2),(4, 3, -4)]_(2 xx 3)^'`
= `[(0, 4),(-1, 3),(2, -4)]_(3 xx 2)`
(A')' = `[(0, 4),(-1, 3),(2, -4)]_(3 xx 2)^'`
= `[(0, -1, 2),(4, 3, -4)]_(2 xx 3)`
= A
Hence, (A')' = A
APPEARS IN
RELATED QUESTIONS
The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
Express the following equations in the matrix form and solve them by method of reduction :
2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :
`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`
If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations
Prove that `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.
Prove that :
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
2x − y = 5
4x − 2y = 7
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]
If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices.
Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations : 3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.
Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.
Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.
Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`
Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`
State whether the following is True or False :
Single element matrix is row as well as column matrix.
If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.
Choose the correct alternative:
If A = `[(1, 2),(2, -1)]`, then adj (A) = ______
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
State whether the following statement is True or False:
After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to.
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
The inverse of a symmetric matrix is ______.
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12
Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.
Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`
Find non-zero values of x satisfying the matrix equation:
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find the matrix A satisfying the matrix equation:
`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP
If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.
Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)
Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
A matrix denotes a number.
If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.
If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?
If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then" x = 1 "and" y = -1`