English

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. - Mathematics and Statistics

Advertisements
Advertisements

Question

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.

Sum

Solution

Let Rs.’x’, Rs.’y’ and Rs.’z’ be the cost of one pencil, one pen and one eraser.
Thus, the system of equations are:

`{:(4x+3y+2z=60),(2x+4y+6z=90),(6x+2y+3z=70):}`

Let us write the above equations in the matrix form as:

`[[4,3,2],[2,4,6],[6,2,3]][[x],[y],[z]]=[[60],[90],[70]] " i.e "AX=B`

`"Using "R_z->R_2-1/2R_1 and R_3->R_3-3/2R_1`

`[[4,3,2],[0,5/2,5],[0,-5/2,0]][[x],[y],[z]]=[[60],[60],[-20]]`

`"Using "R_3->R_3+R_2`

`[[4,3,2],[0,5/2,5],[0,0,5]][[x],[y],[z]]=[(60),(60),(40)]`

As matrix A is reduced to its upper triangular form we can write

4x + 3y + 2z = 60..........(i)

`5/2`y + 5z = 60..........(ii)

0x + 0y + 5z = 40

z = 8.....(iii)

Substituting (iii) in (ii) we get,

`5/2`y + 5(8) = 60

y = `(60 - 40)/5 xx 2 = 8`

y = 8 .....(iv)

Substituting (iii) and (iv) in (i) we get,

4x + 3 (8) + 2 (8) = 60

4x = 60 - 24 - 16

x = `20/4 = 5`

∴ x = 5

∴ The cost of one pencil, one pen and one eraser is Rs. 5, Rs. 8 and Rs. 8 respectively.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrics - Exercise 2.3 [Page 60]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.


Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


The cost of 2 books, 6 notebooks and 3 pens is  Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices. 


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


State whether the following statement is True or False:

After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`


The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


The inverse of a symmetric matrix is ______.


If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?


Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.


Find non-zero values of x satisfying the matrix equation:

`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')


If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.


On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.


In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.


Two matrices are equal if they have same number of rows and same number of columns.


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.


`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


if `A = [(2,5),(1,3)] "then" A^-1` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×