English

Find the Inverse of the Matrix, A= (1,3,3),(1,4,3),(1,3,4) by Using Column Transformations. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.

Sum

Solution

`A=[[1,3,3],[1,4,3],[1,3,4]]`

`|A|=|[1,3,3],[1,4,3],[1,3,4]|`

`=1(16-9)-3(4-3)+3(3-4)`

=1 ≠ 0

A-1  Exists

consider A-1A=I

`A^-1[[1,3,3],[1,4,3],[1,3,4]]=[[1,0,0],[0,1,0],[0,0,1]]`

Applying C2 → C2 -3C1 and C3→ C3 - 3C1,

`A^-1[[1,0,0],[1,1,0],[1,0,1]]=[[1,-3,-3],[0,1,0],[0,0,1]]`

Applying C1→  C1 - C2,

`A^-1[[1,0,0],[0,1,0],[1,0,1]]=[[4,-3,-3],[-1,1,0],[0,0,1]]`

Applying C3 → C3 - C1

`A^-1[[1,0,0],[0,1,0],[0,0,1]]=[[7,-3,-3],[-1,1,0],[-1,0,1]]`

`A^-1=[[7,-3,-3],[-1,1,0],[-1,0,1]]`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


Express the following equations in the matrix form and solve them by method of reduction :

2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1


Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :

`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`


Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.


Transform `[(1, -1, 2),(2, 1, 3),(3, 2, 4)]` into an upper traingular matrix by suitable row transformations.


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


For which values of xis the matrix

`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The number of elements


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find the matrix A satisfying the matrix equation:

`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`


Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`


On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.


A matrix denotes a number.


Two matrices are equal if they have same number of rows and same number of columns.


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.


`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×