Advertisements
Advertisements
Question
Express the following equations in the matrix form and solve them by method of reduction :
2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1
Solution
The matrix form of given equations is
`[[2,-1,1],[1,2,3],[3,1,-4]][[x],[y],[z]]=[[1],[8],[1]]`
`R_1 harr R_2`
`[[1,2,3],[2,-1,1],[3,1,-4]][[x],[y],[z]]=[[8],[1],[1]]`
`R_2-> R_2+R_1`
`[[1,2,3],[3,1,4],[3,1,-4]][[x],[y],[z]]=[[8],[9],[1]]`
`R_3 -> R_3-R_2`
`[[1,2,3],[3,1,4],[0,0,-8]][[x],[y],[z]]=[[8],[9],[-8]]`
`R_2->R_2-3R_1`
`[[1,2,3],[0,-5,-5],[0,0,-8]][[x],[y],[z]]=[[8],[-15],[-8]]`
`[[x+2y+3z],[-5y-5z],[-8z]]=[[8],[-15],[-8]]`
therefore
x + 2y + 3z = 8 .............(1)
-5y -5z = -15....... (2)
-8z = -8..............(3)
From (3),
z = 1
From (2),
-5y - 5(1) = -15 ... (because z = 1)
-5y =-10
y = 2
From (1),
x + 2(2)+ 3(1) = 8 ... (because z = 1 and y = 2)
x = 8 -7
x = 1
Thus, x = 1, y = 2, z = 1
APPEARS IN
RELATED QUESTIONS
The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.
The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
Solve the following equations by the method of reduction :
2x-y + z=1, x + 2y +3z = 8, 3x + y-4z=1.
The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By adding the first and the third number and then subtracting twice the second number from this sum, we get 6. Use this information and find the system of linear equations. Hence, find the three numbers using matrices.
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :
`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`
For what values of k, the system of linear equations
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4
has a unique solution?
Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices.
Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations : 3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.
Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`
Choose the correct alternative.
If A = `[(2, 5),(1, 3)]`, then A–1 = _______
If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
For which values of xis the matrix
`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?
If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to.
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')
If A = `[(1, 5),(7, 12)]` and B `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then" x = 1 "and" y = -1`