English

Using properties of determinants, prove that : |[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab - Mathematics

Advertisements
Advertisements

Question

Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`

Solution

Consider the detrminant

`Delta=|[1+a,1,1],[1,1+b,1],[1,1,1+c]|`

Taking abc common outside, we have

`Delta=abc|[1/a+a,1/b,1/c],[1/a,1/b+1,1/c],[1/a,1/b,1/c+1]|`

Apply the transformation, C1→ C1+C2+C3

`Delta=abc|[1+1/a+1/b+1/c,1/b,1/c],[1+1/a+1/b+1/c,1/b+1,1/c],[1+1/a+1/b+1/c,1/b,1/c+1]|`

`=>Delta=abc(1+1/a+1/b+1/c)|[1,1/b,1/c],[1,1/b+1,1/c],[1,1/b,1/c+1]|`

Apply the transformations R2→ R2-R3 and R3→ R3-R1

`Delta=abc(1+1/a+1/b+1/c)|[1,1/b,1/c],[0,1,0],[0,0,1]|`

Expanding along C1 , we have

`Delta=abc(1+1/a+1/b+1/c)xx1xx|[1,0],[0,1]|`

`Delta=abc(1+1/a+1/b+1/c)=abc+ab+bc+ca`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 3

RELATED QUESTIONS

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


Solve the following equations by the method of reduction :

2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1.


Express the following equations in the matrix form and solve them by method of reduction :

2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1


If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


Prove that :

\[\begin{vmatrix}a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a\end{vmatrix} = 9 \left( a + b \right) b^2\]

 


2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.


Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`


Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


State whether the following is True or False :

Single element matrix is row as well as column matrix.


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


State whether the following statement is True or False:

After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`


The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.


If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______


If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______ 


If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______ 


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______


The inverse of a symmetric matrix is ______.


If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The number of elements


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12 


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`


If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)


Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.


If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.


On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.


If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then"  x = 1  "and"  y = -1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×