English

If F(X) = E 2 X − 1 a X . for X < 0 , a ≠ 0 = 1. for X = 0 = Log ( 1 + 7 X ) B X . for X > 0 , B ≠ 0 is Continuous at X = - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b

Sum

Solution

Since f(x) is continuous  at x = 0 

`lim_(x→0^-) f(x) = lim_(x→0^+) f(x) = f(0)`

Now `lim_(x→0^-) f(x) = lim_(x→0) (e^(2x) - 1)/(ax)`

= `2/a[lim_(x→0) (e^(2x) - 1)/(2x)]`

= `2/a[log e]`   [∵ `lim_(x→0) (a^x - 1)/x = log a`]

= `2/a[1] = 2/a`

`lim_(x→0^-) f(x) = 2/a`

Now `lim_(x→0^+) f(x) = lim_(x→0) log(1 + 7x)/(bx)`

= `7/b[lim_(x →0) log(1 + 7x)/(7x)]`

= `7/b[1]        [∵ lim_(x→0) log(1 + x)/x = 1]`

∴ `lim_(x→0^+) f(x) = 7/b`

Also f(0) = -1

∴ `lim_(x→0^-) f(x) = lim_(x→0^+) f(x) = f(0)`

∴ `2/a = 7/b = 1`

∴ a = 2 , b = 7

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

RELATED QUESTIONS

Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Let f (x) = |sin x|. Then,


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


If f is continuous on its domain D, then |f| is also continuous on D.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×