Advertisements
Advertisements
Question
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
Solution
Let a be a real number, then,
`lim_(x->a^+)f(x) = lim_(h->0) 1/(a + h - 5) = 1/(a - 5)`
`lim_(x->a^-) f(x) = lim_(h->0) 1/(a - h - 5) = 1/(a-5)`
`f (a) = 1/(a-5)`
`∵ lim_(x->a^+) f(x) = lim_(x->a^-) f(x) = f(a)`
Hence, the given function `f (x) = 1/(x - 5)` is continuous at all points except at x = 5.
APPEARS IN
RELATED QUESTIONS
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
For what value of k is the following function continuous at x = 2?
Find the points of discontinuity, if any, of the following functions:
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
The value of f (0), so that the function
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at \[x = \frac{\pi}{2}\], if
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
The function f (x) = sin−1 (cos x) is
If \[f\left( x \right) = \left| \log_e |x| \right|\]
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "if" x ≠ 2),("k"",", "if" x = 2):}` at x = 2
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`