Advertisements
Advertisements
Question
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
Solution
`f(x)={(x^2,-x,+9, "for" x,- <=3 ), (4x,+,3 ,"for" ,x>3):}`
`lim_(x -> 3^-)` f(x) = `lim_(x -> 3)` (x2 - x + 9)
= 9 - 3 + 9
= 15
`lim_(x -> 3^+)` f(x) = `lim_(x -> 3)` (4x + 3)
= (4 x 3) + 3
= 15 .........(i)
f(3) = 32 - 3 + 9
= 15.......(ii)
From (i) and (ii)
`lim_(x -> 3^-)` f(x) = `lim_(x -> 3^+)` f(x) = f(3)
`therefore` Function f(x) is continuous at x = 3.
APPEARS IN
RELATED QUESTIONS
Discuss the continuity of the following functions at the indicated point(s):
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
Define differentiability of a function at a point.
Write the points where f (x) = |loge x| is not differentiable.
The function f (x) = e−|x| is
If \[f\left( x \right) = \left| \log_e |x| \right|\]
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
The function f(x) = |x| + |x – 1| is ______.
A continuous function can have some points where limit does not exist.
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
If f is continuous on its domain D, then |f| is also continuous on D.