English

The Function F (X) = Sin−1 (Cos X) is (A) Discontinuous at X = 0 (B) Continuous at X = 0 (C) Differentiable at X = 0 (D) None of These - Mathematics

Advertisements
Advertisements

Question

The function f (x) = sin−1 (cos x) is

Options

  • discontinuous at x = 0

  • continuous at x = 0

  • differentiable at x = 0

  • none of these

MCQ

Solution

(b) continuous at x = 0 

Given:  

\[f(x) = \sin^{- 1} \left( \cos x \right) .\]

Continuity at x = 0: 

We have,
(LHL at x = 0) 

\[\lim_{x \to 0^-} f(x) \]
\[ = \lim_{h \to 0} \sin^{- 1} \left\{ \cos\left( 0 - h \right) \right\}\]
\[ = \lim_{h \to 0} \sin^{- 1} \left( \cos h \right)\]
\[ = \sin^{- 1} \left( 1 \right)\]
\[ = \frac{\pi}{2}\]

(RHL at x = 0)

\[\lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{h \to 0} \sin^{- 1} \cos\left( 0 + h \right)\]
\[ = \lim_{h \to 0} \sin^{- 1} \left( \cos h \right)\]
\[ = \sin^{- 1} \left( 1 \right) \]
\[ = \frac{\pi}{2}\]

\[f(0) = \sin^{- 1} \left( \cos 0 \right) \]
\[ = \sin^{- 1} \left( 1 \right)\]
\[ = \frac{\pi}{2}\]

\[\lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( 0 - h \right) - \frac{\pi}{2}}{- h} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( - h \right) - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( h \right) - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left\{ \sin \left( \frac{\pi}{2} - h \right) \right\} - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{- h}{- h}\]
\[ = 1\]

RHD at x = 0

\[\lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( 0 + h \right) - \frac{\pi}{2}}{h} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( h \right) - \frac{\pi}{2}}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left\{ \sin \left( \frac{\pi}{2} - h \right) \right\} - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{- h}{h}\]
\[ = - 1\]

\[\therefore LHD \neq RHD\]

Hence, the function is not differentiable at x = 0 but is continuous at x = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 2 | Page 17

RELATED QUESTIONS

Examine the following function for continuity:

f(x) = | x – 5|


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Define continuity of a function at a point.

 

The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Is every continuous function differentiable?


The function f (x) =  |cos x| is


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If y = ( sin x )x , Find `dy/dx`


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


The function given by f (x) = tanx is discontinuous on the set ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×