English

If the Function F(X) = X2 + Ax + B, X < 2 = 3x + 2, 2≤ X ≤ 4 = 2ax + 5b, 4 < X is Continuous at X = 2 and X = 4, Then Find the Values of a and B - Mathematics and Statistics

Advertisements
Advertisements

Question

If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b

Sum

Solution

Thie function is continuous at x = 2 

`lim_(x ->2^-)  f(x) = lim_(x ->2^+) f(x) = f(2)`

`lim_(x ->2) x^2 + ax + b = lim_(x ->2) 3x + 2`

4 + 2a + b = 6 + 2

2a + b = 4......(1)

Given function is also continuous at x = 4.

`lim_(x ->4^-)  f(x) = lim_(x ->4^+) f(x) = f(4)`

`lim_(x ->4) 3x + 2 = lim_(x ->2) 2ax + 5b`

3(4) + 2 = 2a(4) + 5b

14 = 8a + 5b........(ii)

Multiply equaiton (i) by S and subtract it from equation (ii), we get

8a    +     5b    =  14
10a  +     5b    =  20
-               -         -
_________________________
               -2a   =  -6 ⇒ a = 3

Put this value of 'a' in equation (i), we get
2(3) + b = 4
           b = 4 -6 = -2

Hence, a = 3 and b = -2

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Examine the following function for continuity:

f(x) = | x – 5|


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


Show that f(x) = x1/3 is not differentiable at x = 0.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×