मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.

बेरीज

उत्तर

Let the cost of each T.V. set be ₹ x and each V.C.R. be ₹ y. Then the total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ (3x + 2y) which is given to be ₹35,000.

∴ 3x + 2y = 35000

The shopkeeper wants profit of ₹ 1000 per T.V. set and of ₹ 500 per V.C.R.

∴ the selling price of each T.V. set is ₹ (x + 1000) and each V.C.R. is ₹ (y + 500).

∴ selling price of 2 T.V. set and 1 V.C.R. is

₹ [2(x + 1000) + (y + 500)] which is given to be ₹ 21500

∴ 2(x + 1000) + (y + 500) = 21500

∴ 2x + 2000 + y + 500 = 21500

∴ 2x + y = 21500 - 2500

∴ 2x + y = 19000

Hence, the system of linear equations is

3x + 2y = 35000

2x + y = 19000

These equations can be written in the matrix form as:

`[(3,2),(2,1)] [("x"),("y")] = [(35000),(19000)]`

By R1 ↔ R2, we get,

`[(2,1),(3,2)] [("x"),("y")] = [(19000),(35000)]`

By R2 - 2R1, we get,

`[(2,1),(-1,0)] [("x"),("y")] = [(19000),(- 3000)]`

∴ `[(2"x" + "y"),(- "x" + 0)] = [(19000),(- 3000)]`

By equality of matrices,

2x + y = 19000     ....(1)

- x = - 3000      ....(2)

From (2), x = 3000

Substituting x = 3000 in (1), we get,

2(3000) + y = 19000

∴ y = 13000

∴ the cost price of one T.V. set is ₹ 3000 and of one V.C.R. is ₹ 13000 and the selling price of one T.V. set is ₹ 4000 and of one V.C.R. is ₹ 13500.

shaalaa.com
Elementry Transformations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Exercise 2.3 [पृष्ठ ६०]

संबंधित प्रश्‍न

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(1,2,-1),(0,1,3)]`, 2C2

B = `[(1,0,2),(2,4,5)]`, −3R1

Find the addition of the two new matrices.


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`((1,1),(1,1))`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


Check whether the following matrix is invertible or not:

`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`


If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


If A = `[(-2, 4),(-1, 2)]` then find A2 


If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×