मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If A = [1112],B=[4131] and C = [247319], then find the matrix X such that AXB = C - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C

बेरीज

उत्तर

Since, AXB = C

∴ `[(1,1),(1,2)] ("XB") = [(24,7),(31,9)]`

First we perform the row transformations.

Applying R2 → R2 − R1,

`[(1,1),(0,1)] ("XB") = [(24,7),(7,2)]`

Applying R2 → R1 − R2,

`[(1,0),(0,1)] ("XB") = [(17,5),(7,2)]`

∴ XB = `[(17,5),(7,2)]`

∴ X `[(4,1),(3,1)] = [(17,5),(7,2)]`

Now, we perform the column transformations.

Applying  C1 ↔ C2

`"X" [(1,4),(1,3)] = [(5,17),(2,7)]`

Applying C2 → C2 − 4C1,

`"X"[(1,0),(1,-1)] = [(5,-3),(2,-1)]`

Applying C2 → −C2,

`"X"[(1,0),(1,1)] = [(5,3),(2,1)]`

Applying C1 → C1 − C2

`"X"[(1,0),(0,1)] = [(2,3),(1,1)]`

∴ X = `[(2,3),(1,1)]`

shaalaa.com
Elementry Transformations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५४]

संबंधित प्रश्‍न

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?


Apply the given elementary transformation of the following matrix.

A = `[(1,2,-1),(0,1,3)]`, 2C2

B = `[(1,0,2),(2,4,5)]`, −3R1

Find the addition of the two new matrices.


Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`((1,1),(1,1))`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`


Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.


If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2 


If A = `[(-2, 4),(-1, 2)]` then find A2 


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.


If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1


Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×