English

Find the inverse of A = cossinsincos[cosθ-sinθ0sinθcosθ0001] by elementary column transformations. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.

Sum

Solution

|A| = `|("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)|`

= cos θ(cos θ - 0) + sin θ(sin θ - 0) + 0

= cos2θ + sin2θ = 1 ≠ 0

∴ A-1 exists.

Consider A-1A = I

∴ `"A"^-1 [("cos"theta, -"sin"theta,0),("sin"theta,"cos"theta,0),(0,0,1)] = [(1,0,0),(0,1,0),(0,0,1)]`

By (cos θ) × C1, we get, 

`"A"^-1 = [("cos"^2theta,-"sin"theta,0),("sin"theta"cos"theta,"cos"theta,0),(0,0,1)] = [("cos"theta,0,0),(0,1,0),(0,0,1)]`

By C1 - sin θ × C2, we get,

`"A"^-1 [(1,-"sin"theta,0),(0,"cos"theta,0),(0,0,1)] = [("cos"theta,0,0),(-"sin"theta,1,0),(0,0,1)]`

By C2 + sin θ × C1, we get,

`"A"^-1 [(1,0,0),(0,"cos"theta,0),(0,0,1)] = [("cos"theta,"sin"theta"cos"theta,0),(-"sin"theta,"cos"^2theta,0),(0,0,1)]`

By `(1/("cos"theta))"C"_2`, we get,

`"A"^-1[(1,0,0),(0,1,0),(0,0,1)] = [("cos"theta,"sin"theta,0),(-"sin"theta,"cos"theta,0),(0,0,1)]`

shaalaa.com
Elementry Transformations
  Is there an error in this question or solution?
Chapter 2: Matrics - Miscellaneous exercise 2 (A) [Page 53]

APPEARS IN

RELATED QUESTIONS

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2


Apply the given elementary transformation of the following matrix.

A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?


Apply the given elementary transformation of the following matrix.

A = `[(1,2,-1),(0,1,3)]`, 2C2

B = `[(1,0,2),(2,4,5)]`, −3R1

Find the addition of the two new matrices.


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find A−1 using column transformations:

A = `[(5, 3),(3, -2)]`


Find A−1 using column transformations:

A = `[(2, -3),(-1, 2)]`


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.


If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.


If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1


Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×