English

Apply the given elementary transformation of the following matrix. Convert [1-123] into an identity matrix by suitable row transformations. - Mathematics and Statistics

Advertisements
Advertisements

Question

Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.

Sum

Solution

Let A `[(1,-1),(2,3)]`

∴ |A| =  `[(1,-1),(2,3)]`

= 3 + 2 = 5 ≠ 0

∴ A is a non-singular matrix.

Hence, row transformations are possible.

Now A = `[(1,-1),(2,3)]`

Applying R2→ R2 - 2R1, we get

A ~ `[(1,-1),(0,5)]`

Applying R2 → `(1/5)`R2, we get

A ~ `[(1,-1),(0,1)]`

Applying R1 → R1 + R2, we get

A ~ `[(1, 0), (0,1)]`, which is an identity matrix.

shaalaa.com
Elementry Transformations
  Is there an error in this question or solution?
Chapter 2: Matrics - Exercise 2.1 [Page 39]

RELATED QUESTIONS

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


Apply the given elementary transformation of the following matrix.

Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`


If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C


Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2 


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find A−1 using column transformations:

A = `[(2, -3),(-1, 2)]`


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×