English

Find the matrix X such that AX = B, where A = [12-13] and B = [0124] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`

Sum

Solution

AX = B

∴ `[(1,2),(-1,3)] "X" = [(0,1),(2,4)]`

By R2 +R1, we get,

`[(1,2),(0,5)] "X" = [(0,1),(2,5)]`

By `(1/5)"R"_2,` we get,

`[(1,2),(0,1)] "X" =[(0,1),(2/5,1)]`

By R1 - 2R2, we get,

`[(1,0),(0,1)] "X" = [(-4/5,-1),(2/5,1)]`

∴ X = `[(-4/5,-1),(2/5,1)]`

shaalaa.com

Notes

The answer in the textbook is incorrect.

Elementry Transformations
  Is there an error in this question or solution?
Chapter 2: Matrics - Miscellaneous exercise 2 (A) [Page 53]

APPEARS IN

RELATED QUESTIONS

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?


Apply the given elementary transformation of the following matrix.

A = `[(1,2,-1),(0,1,3)]`, 2C2

B = `[(1,0,2),(2,4,5)]`, −3R1

Find the addition of the two new matrices.


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.


Apply the given elementary transformation of the following matrix.

Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


Check whether the following matrix is invertible or not:

`((1,1),(1,1))`


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


Check whether the following matrix is invertible or not:

`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


Find the inverse of the following matrix (if they exist).

`[(1,3,-2),(-3,0,-5),(2,5,0)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.


If A = `[(-2, 4),(-1, 2)]` then find A2 


Find A−1 using column transformations:

A = `[(5, 3),(3, -2)]`


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×