Advertisements
Advertisements
Question
If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`
Solution
|A| = `[("x",0,0),(0,"y",0),(0,0,"z")]`
= x(yz) − 0 + 0
= xyz ≠ 0
Since A is a non-singular matrix, A−1 exists.
Consider, AA−1 = I
∴ `[("x",0,0),(0,"y",0),(0,0,"z")] "A"^-1 = [(1,0,0),(0,1,0),(0,0,1)]`
By `(1/"x") "R"_1, (1/"y")"R"_2` and `(1/"z")"R"_3,` we get,
`[(1,0,0),(0,1,0),(0,0,1)] "A"^-1 = [(1/"x",0,0),(0,1/"y",0),(0,0,1/"z")]`
∴ A−1 = `[(1/"x",0,0),(0,1/"y",0),(0,0,1/"z")]`
Comparing `[(2,0,0),(0,1,0),(0,0,-1)]` with `[("x",0,0),(0,"y",0),(0,0,"z")]`
we get, x = 2, y = 1, z = - 1
∴ `1/x = 1/2, 1/y = 1/1 = 1, 1/z = 1/-1 = - 1`
Hence, the inverse of
`[(2,0,0),(0,1,0),(0,0,-1)] "is" [(1/2,0,0),(0,1,0),(0,0,-1)]`
APPEARS IN
RELATED QUESTIONS
Apply the given elementary transformation of the following matrix.
B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,2,-1),(0,1,3)]`, 2C2
B = `[(1,0,2),(2,4,5)]`, −3R1
Find the addition of the two new matrices.
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
Apply the given elementary transformation of the following matrix.
Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.
If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,1),(1,1))`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`((2,3),(10,15))`
Check whether the following matrix is invertible or not:
`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(2,-1,3),(1,2,3))`
Check whether the following matrix is invertible or not:
`((1,2,3),(3,4,5),(4,6,8))`
If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.
If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.
Find the inverse of the following matrix (if they exist).
`[(1,3,-2),(-3,0,-5),(2,5,0)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are
Choose the correct answer from the given alternatives in the following question:
The inverse of `[(0,1),(1,0)]` is
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is
If A = `[(-2, 4),(-1, 2)]` then find A2
Find A−1 using column transformations:
A = `[(2, -3),(-1, 2)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1
Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.