Advertisements
Advertisements
Question
Find the inverse of the following matrix (if they exist).
`[(1,3,-2),(-3,0,-5),(2,5,0)]`
Solution
Let A = `[(1,3,-2),(-3,0,-5),(2,5,0)]`
∴ |A| = `|(1,3,-2),(-3,0,-5),(2,5,0)|`
= 1(0 + 25) + 3(0 + 10) + 2(- 15 - 0)
= 25 + 30 - 30
= 25 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
∴ `[(1,3,-2),(-3,0,-5),(2,5,0)] "A"^-1 = [(1,0,0),(0,1,0),(0,0,1)]`
By R2 → R2 + 3R1
`[(1,3,-2),(0,9,-11),(2,5,0)] "A"^-1 = [(1,0,0),(3,1,0),(0,0,1)]`
By R3 → R3 - 2R1
`[(1,3,-2),(0,9,-11),(0,-1,4)] "A"^-1 = [(1,0,0),(3,1,0),(-2,0,1)]`
By `"R" -> 1/9 "R"_2`
`[(1,3,-2),(0,1,-11/9),(0,-1,4)] "A"^-1 = [(1,0,0),(1/3,1/9,0),(-2,0,1)]`
By `"R"_3 -> "R"_3 + "R"_2`
`[(1,3,-2),(0,1,-11/9),(0,0,25/9)] "A"^-1 = [(1,0,0),(1/3,1/9,0),(-5/3,1/9,1)]`
By `"R"_1 -> "R"_1 + 3"R"_2`
`[(1,0,5/3),(0,1,-11/9),(0,0,25/9)] "A"^-1 = [(0,-1/3,0),(1/3,1/9,0),(-5/3,1/9,1)]`
By `"R"_3 -> 9/25 "R"_3`
`[(1,0,5/3),(0,1,-11/9),(0,0,1)] "A"^-1 = [(0,-1/3,0),(1/3,1/9,0),(-3/5,1/25,9/25)]`
By `"R"_2 -> "R"_2 + 11/9 "R"_3`
`[(1,0,5/3),(0,1,0),(0,0,1)] "A"^-1 = [(0,-1/3,0),(-2/5,4/25,11/25),(-3/5,1/25,9/25)]`
By `"R"_1 -> "R"_1 - 5/3 "R"_3`
`[(1,0,0),(0,1,0),(0,0,1)] "A"^-1 = [(5/5,-6/15,-3/5),(-2/5,4/25,11/25),(-3/5,1/25,9/25)]`
`"A"^-1 = [(1,-2/5,-3/5),(-2/5,4/25,11/25),(-3/5,1/25,9/25)]`
`"A"^-1 = 1/25 [(25,-10,-15),(-10,4,11),(-15,1,9)]`
APPEARS IN
RELATED QUESTIONS
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,2,-1),(0,1,3)]`, 2C2
B = `[(1,0,2),(2,4,5)]`, −3R1
Find the addition of the two new matrices.
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?
The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.
If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(2,-1,3),(1,2,3))`
If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`
If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.
If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`
Find A−1 using column transformations:
A = `[(2, -3),(-1, 2)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1