Advertisements
Advertisements
Question
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
Solution
A = `["a"_"ij"]_(3xx3) = [("a"_11,"a"_12,"a"_13),("a"_21,"a"_22,"a"_23),("a"_31,"a"_32,"a"_33)]`
`"A"_21 = (-1)^(2+1)"M"_21 = - |("a"_12,"a"_13),("a"_32,"a"_33)|`
`= - ("a"_12"a"_33 - "a"_13"a"_32)`
`= - "a"_12"a"_33 + "a"_13"a"_32`
`"A"_22 = (-1)^(2+2)"M"_22 = - |("a"_11,"a"_13),("a"_31,"a"_33)|`
= a11a33 - a13a31
`"A"_23 = (-1)^(2+3)"M"_23 = - |("a"_11,"a"_12),("a"_31,"a"_32)|`
= - (a11a32 - a12a31)
= - a11a32 + a12a31
∴ `"a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23`
`= "a"_11 (- "a"_12"a"_33 + "a"_13"a"_32) + "a"_12("a"_11"a"_33 - "a"_13"a"_31) + "a"_13(- "a"_11"a"_32 + "a"_12"a"_31)`
`= - "a"_11"a"_12"a"_33 + "a"_11"a"_13"a"_32 + "a"_11"a"_12"a"_33 - "a"_12"a"_13"a"_31 - "a"_11"a"_13"a"_32 + "a"_12"a"_13"a"_31`
= 0
APPEARS IN
RELATED QUESTIONS
Apply the given elementary transformation of the following matrix.
B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.
If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`[(cos theta, sin theta),(-sin theta, cos theta)]`
Check whether the following matrix is invertible or not:
`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(2,-1,3),(1,2,3))`
If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.
If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are
Choose the correct answer from the given alternatives in the following question:
The inverse of `[(0,1),(1,0)]` is
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
If A = `[(-2, 4),(-1, 2)]` then find A2
Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`
Find A−1 using column transformations:
A = `[(5, 3),(3, -2)]`
Find A−1 using column transformations:
A = `[(2, -3),(-1, 2)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.