Advertisements
Advertisements
प्रश्न
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
उत्तर
Let A = `[(1,−1,2),(2,1,3),(3,2,4)]`
C1 → C1 − 2C2
A ∼ `[(3,−1,2),(0,1,3),(−1,2,4)]`
C2 → C2 + 2C1
A ∼ `[(3,5,2),(0,1,3),(−1,0,4)]`
C1 → 4C1 + C3
A ∼ `[(14,5,2),(3,1,3),(0,0,4)]`
C1 → C1 − 3C2
A ∼ `[(−1,5,2),(0,1,3),(0,0,4)]`
APPEARS IN
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
Apply the given elementary transformation of the following matrix.
Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.
If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`((2,3),(10,15))`
Check whether the following matrix is invertible or not:
`[(cos theta, sin theta),(-sin theta, cos theta)]`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(3,4,5),(4,6,8))`
If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|`
If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2
If A = `[(-2, 4),(-1, 2)]` then find A2
Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`
Find A−1 using column transformations:
A = `[(5, 3),(3, -2)]`
Find A−1 using column transformations:
A = `[(2, -3),(-1, 2)]`
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1
Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.