Advertisements
Advertisements
प्रश्न
If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2
उत्तर
A2 = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)] [(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]`
= `[(4 + 2 - 4, -2 - 3 + 4, 2 + 2 - 3),(-4 - 6 + 8, 2 + 9 - 8, -2 - 6 + 6),(-8 - 8 + 12, 4 + 12 - 12, -4 - 8 + 9)]`
= `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]`
= A
APPEARS IN
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?
Apply the given elementary transformation of the following matrix.
Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.
If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((2,3),(10,15))`
Check whether the following matrix is invertible or not:
`[(cos theta, sin theta),(-sin theta, cos theta)]`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(2,-1,3),(1,2,3))`
Check whether the following matrix is invertible or not:
`((1,2,3),(3,4,5),(4,6,8))`
If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|`
If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.
Find the inverse of the following matrix (if they exist).
`[(1,3,-2),(-3,0,-5),(2,5,0)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
If A = `[(-2, 4),(-1, 2)]` then find A2
Find A−1 using column transformations:
A = `[(5, 3),(3, -2)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1
Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.