Advertisements
Advertisements
प्रश्न
Solve the following determinant equation:
उत्तर
\[\text{ Let }∆ = \begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix}\]
\[ = \begin{vmatrix}x + a + b + c & b & c \\ x + a + b + c & x + b & c \\ x + a + b + c & b & x + c\end{vmatrix} \left[\text{ Applying }C_1 \text{ to }C_1 + C_2 + C_3 \right]\]
\[ = \left( x + a + b + c \right)\begin{vmatrix}1 & b & c \\ 1 & x + b & c \\ 1 & b & x + c\end{vmatrix} \]
\[ = \left( x + a + b + c \right)\begin{vmatrix}1 & b & c \\ 0 & x & 0 \\ 1 & b & x + c\end{vmatrix} \left[\text{ Applying }R_2 \text{ to }R_2 - R_1 \right]\]
\[ = \left( x + a + b + c \right)\begin{vmatrix}1 & b & c \\ 0 & x & 0 \\ 0 & 0 & x\end{vmatrix} \left[\text{ Applying }R_3 \text{ to }R_3 - R_1 \right]\]
\[ ∆ = \left( x + a + b + c \right)\left( x^2 - 0 \right) = 0 \left[\text{ Given }\right]\]
\[ \Rightarrow x^2 = 0\text{ or }x + a + b + c = 0\]
\[ \Rightarrow x = 0\text{ or }x = - \left( a + b + c \right)\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
Prove that :
Prove that
x+ y = 5
y + z = 3
x + z = 4
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
For what value of x, the following matrix is singular?
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).