हिंदी

If D K = ∣ ∣ ∣ ∣ ∣ 1 N N 2 K N 2 + N + 2 N 2 + N 2 K − 1 N 2 N 2 + N + 2 ∣ ∣ ∣ ∣ ∣ a N D N ∑ K = 1 D K = 48 , Then N Equals (A) 4 (B) 6 (C) 8 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 

विकल्प

  • 4

  • 6

  • 8

  •  none of these

MCQ

उत्तर

(a) 4
\[D_k = \begin{vmatrix} 1 & n & n\\ 2k & n^2 + n + 2 & n^2 + n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ = \begin{vmatrix} 1 & n & n\\ 1 & n + 2 & - 2\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ \sum\nolimits_{k = 1}^n D_k = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 1 & n^2 & n^2 + n + 2 \end{vmatrix} + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 3 & n^2 & n^2 + n + 2 \end{vmatrix} + . . . + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ n & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ \sum\nolimits_{k = 1}^n D_k = 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 1\left( n\left( - 2 - n \right) - 2n \right) + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 2\left( n\left( - 2 - n \right) - 2n \right) + . . . + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + n\left( n\left( - 2 - n \right) - 2n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( 1 + 3 + 5 + 7 + . . . + n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( n^2 \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = 2 n^2 + 4n\]
\[ \Rightarrow 2 n^2 + 4n = 48\]
\[ \Rightarrow \left( n - 6 \right)\left( n - 4 \right) = 0\]
\[ \Rightarrow n = 4\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.7 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.7 | Q 8 | पृष्ठ ९३

संबंधित प्रश्न

Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


x + 2y = 5
3x + 6y = 15


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]


If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.


The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×