English

Find the Particular Solution of the Differential Equation ( 1 + Y 2 ) + ( X − E Tan − 1 Y ) D Y D X = Given that Y = 0 When X = 1. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Solution

We have

\[\left( 1 + y^2 \right) +\left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow \left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{\left( x - e^{\tan^{- 1} y} \right)}\]

\[ \Rightarrow \frac{dx}{dy} = - \frac{x - e^{\tan^{- 1}} y}{1 + y^2}\]

\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{- 1}} y}{1 + y^2} . . . . . \left( 1 \right)\]

\[\text { Clearly, it is a linear differential equation of the form } \]

\[\frac{dx}{dy} + Px = Q\]

\[\text { where }, \]

\[P = \frac{1}{1 + y^2}\]

\[Q = \frac{e^{\tan^{- 1}} y}{1 + y^2} \]

\[ \therefore I . F . = e^\int P dy \]

\[ = e^\int\frac{1}{1 + y^2} dy \]

\[ = e^{\tan^{- 1}} y \]

\[\text { Multiplying both sides of } \left( 1 \right) by e^{\tan^{- 1}
}y , we get\]

\[ e^{\tan^{- 1}} y \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{\tan^{- 1}} y \frac{e^{\tan^{- 1}} y}{1 + y^2}\]

\[ \Rightarrow e^{\tan^{- 1}} y \frac{dx}{dy} + \frac{x e^{\tan^{- 1}} x}{1 + y^2} = \frac{e^{2 \tan^{- 1} y}}{1 + y^2}\]

\[\text { Integrating both sides with respect to y, we get }\]

\[x e^{\tan^{- 1} } y = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy + C\]

\[ \Rightarrow x e^{\tan^{- 1} } y = I + C . . . . . \left( 2 \right)\]

\[\text { Here }, \]

\[I = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy\]

\[\text { Putting } \tan^{- 1} y = t, \text { we get }\]

\[\frac{1}{1 + y^2}dy = dt\]

\[ \therefore I = \int e^{2t} dt\]

\[ = \frac{e^{2t}}{2}\]

\[ = \frac{e^{2 \tan^{- 1} y}}{2}\]

\[\text { Putting the value of I in } \left( 2 \right), \text { we get }\]

\[x  e^{\tan^{- 1} }y = \frac{e^{2 \ tan^{- 1} y}}{2} + C\]

\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + 2C\]

\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + k \left( \text { where }k = 2C \right)\]

\[ \Rightarrow 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k\]

\[2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k \]

\[\text { To fiind the particular solution we have to put the values of x and y as 1 and 0 respectively } . \]

\[2 e^{\tan^{- 1} 0} = e^{2 \tan^{- 1} 0} + k\]

\[ \Rightarrow 2 = 1 + k\]

\[ \Rightarrow k = 1\]

\[\text{ So, the particular solution is } 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + 1 . \]

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Foreign Set 3

RELATED QUESTIONS

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×