Advertisements
Advertisements
Question
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Solution
We have
\[\left( 1 + y^2 \right) +\left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
\[ \Rightarrow \left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{\left( x - e^{\tan^{- 1} y} \right)}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{x - e^{\tan^{- 1}} y}{1 + y^2}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{- 1}} y}{1 + y^2} . . . . . \left( 1 \right)\]
\[\text { Clearly, it is a linear differential equation of the form } \]
\[\frac{dx}{dy} + Px = Q\]
\[\text { where }, \]
\[P = \frac{1}{1 + y^2}\]
\[Q = \frac{e^{\tan^{- 1}} y}{1 + y^2} \]
\[ \therefore I . F . = e^\int P dy \]
\[ = e^\int\frac{1}{1 + y^2} dy \]
\[ = e^{\tan^{- 1}} y \]
\[\text { Multiplying both sides of } \left( 1 \right) by e^{\tan^{- 1}
}y , we get\]
\[ e^{\tan^{- 1}} y \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{\tan^{- 1}} y \frac{e^{\tan^{- 1}} y}{1 + y^2}\]
\[ \Rightarrow e^{\tan^{- 1}} y \frac{dx}{dy} + \frac{x e^{\tan^{- 1}} x}{1 + y^2} = \frac{e^{2 \tan^{- 1} y}}{1 + y^2}\]
\[\text { Integrating both sides with respect to y, we get }\]
\[x e^{\tan^{- 1} } y = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{\tan^{- 1} } y = I + C . . . . . \left( 2 \right)\]
\[\text { Here }, \]
\[I = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy\]
\[\text { Putting } \tan^{- 1} y = t, \text { we get }\]
\[\frac{1}{1 + y^2}dy = dt\]
\[ \therefore I = \int e^{2t} dt\]
\[ = \frac{e^{2t}}{2}\]
\[ = \frac{e^{2 \tan^{- 1} y}}{2}\]
\[\text { Putting the value of I in } \left( 2 \right), \text { we get }\]
\[x e^{\tan^{- 1} }y = \frac{e^{2 \ tan^{- 1} y}}{2} + C\]
\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + 2C\]
\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + k \left( \text { where }k = 2C \right)\]
\[ \Rightarrow 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k\]
\[2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k \]
\[\text { To fiind the particular solution we have to put the values of x and y as 1 and 0 respectively } . \]
\[2 e^{\tan^{- 1} 0} = e^{2 \tan^{- 1} 0} + k\]
\[ \Rightarrow 2 = 1 + k\]
\[ \Rightarrow k = 1\]
\[\text{ So, the particular solution is } 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + 1 . \]
APPEARS IN
RELATED QUESTIONS
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.