English

The solution of the differential equation ddeedydx=ex-y+x2e-y is ______. - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.

Options

  • y =`"e"^(x - y) = x^2 "e"^-y + "c"`

  • `"e"^y - "e"^x = x^3/3 + "c"`

  • `"e"^x + "e"^y = x^3/3 + "c"`

  • `"e"^x - "e"^y = x^3/3 + "c"`

MCQ
Fill in the Blanks

Solution

The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is `"e"^y - "e"^x = x^3/3 + "c"`.

Explanation:

The given differential equation is `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y`

⇒ `("d"y)/("d"x) = "e"^x . "e"^-y + x^2 . "e"^-y`

⇒ `("d"y)/("d"x) = "e"^-y ("e"^x + x^2)`

⇒ `("d"y)/"e"^-y = ("e"^x + x^2)"d"x`

⇒ `"e"^y . "d"y = ("e"^x + x^2)"d"x`

Integrating both sides, we have

`int "e"^x  "d"y = int ("e"^x + x^2)  "d"x`

⇒ `"e"^y = "e"^x + x^3/3 + "c"`

⇒ `"e"^y - "e"^x = x^3/3 + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 201]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 74 | Page 201

RELATED QUESTIONS

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×