Advertisements
Advertisements
Question
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
Options
None
One
Two
Infinite
Solution
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is one.
Explanation:
The given differential equation is `("d"y)/("d"x) = (y + 1)/(x - 1)`
⇒ `("d"y)/(y + 1) = ("d"x)/(x - 1)`
Integrating both sides, we get
`int ("d"y)/(y + 1) = int ("d"x)/(x - 1)`
⇒ log(y + 1) = log(x – 1) + log c
⇒ log(y + 1) – log(x – 1) = log c
⇒ `log|(y + 1)/(x - 1)|` = log c
⇒ `(y + 1)/(x - 1)` = c
Put x = 1 and y = 2
⇒ `(2 + 1)/(1 - 1)` = c
∴ c = `oo`
∴ `(y +1)/(x - 1) = 1/0`
⇒ x – 1 = 0
⇒ x = 1.
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.