मराठी

3x − Y + 2z = 0 4x + 3y + 3z = 0 5x + 7y + 4z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0

उत्तर

Here,
3x − y + 2z = 0                  ...(1)
4x + 3y + 3z = 0                ...(2)
5x + 7y + 4z = 0                ...(3)

The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}3 & - 1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4\end{bmatrix} \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here, 
\[A = \begin{bmatrix}3 & - 1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now, 
\[\left| A \right| = \begin{vmatrix}3 & - 1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4\end{vmatrix}\]
\[ = 3\left( 12 - 21 \right) + 1\left( 16 - 15 \right) + 2(28 - 15)\]
\[ = - 27 + 1 + 26\]
\[ = 0\]
\[\therefore\left| A \right|\neq0\]
So, the given systemof homogeneous equations has non-trivial solution.
Substituting z=k in eq. (1) & eq. (2), we get
\[3x - y = - 2k\text{ and }4x + 3y = - 3k\]
\[AX = B\]
Here,
\[A=\begin{bmatrix}3 & - 1 \\ 4 & 3\end{bmatrix}, X=\binom{x}{y}\text{ and }B = \binom{ - 2k}{ - 3k}\]
\[ \Rightarrow \begin{bmatrix}3 & - 1 \\ 4 & 3\end{bmatrix}\binom{x}{y} = \binom{ - 2k}{ - 3k}\]
\[\left| A \right|=\begin{vmatrix}3 & - 1 \\ 4 & 3\end{vmatrix}\]
\[=\left( 3 \times 3 + 4 \times 1 \right)\]
\[=13\]
\[\text{ So, }A^{- 1}\text{ exists .} \]
We have
\[adjA=\begin{bmatrix}3 & 1 \\ - 4 & 3\end{bmatrix}\]
\[ A^{- 1} =\frac{1}{\left| A \right|}adjA\]
\[ \Rightarrow A^{- 1} = \frac{1}{13}\begin{bmatrix}3 & 1 \\ - 4 & 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{13}\begin{bmatrix}3 & 1 \\ - 4 & 3\end{bmatrix}\binom{ - 2k}{ - 3k}\]
\[ = \frac{1}{13}\binom{ - 6k - 3k}{8k - 9k}\]
\[\text{ Thus, }x=\frac{- 9k}{13},y=\frac{- k}{13}\text{ and }z=k\left( \text{ wherekis any real number }\right)\text{ satisfy the given system of equations. }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.2 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.2 | Q 3 | पृष्ठ २०

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


If \[a, b\] and c  are all non-zero and 

\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c\end{vmatrix} =\] 0, then prove that 
\[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\]1
= 0

 


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


Prove that :

\[\begin{vmatrix}\left( a + 1 \right) \left( a + 2 \right) & a + 2 & 1 \\ \left( a + 2 \right) \left( a + 3 \right) & a + 3 & 1 \\ \left( a + 3 \right) \left( a + 4 \right) & a + 4 & 1\end{vmatrix} = - 2\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.


If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×