मराठी

Solve the Following System of Equations by Matrix Method: X + Y + Z = 6 X + 2z = 7 3x + Y + Z = 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12

उत्तर

Here, 
\[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{vmatrix}\]
\[ = 1\left( 0 - 2 \right) - 1\left( 1 - 6 \right) + 1(1 - 0)\]
\[ = - 2 + 5 + 1\]
\[ = 4\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & 2 \\ 1 & 1\end{vmatrix} = - 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ 3 & 1\end{vmatrix} = 5, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 0 \\ 3 & 1\end{vmatrix} = 1\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ 1 & 1\end{vmatrix} = 0, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 3 & 1\end{vmatrix} = - 2, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 3 & 1\end{vmatrix} = 2\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 0 & 2\end{vmatrix} = 2, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix} = - 1, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 1 & 0\end{vmatrix} = - 1\]
\[adj A = \begin{bmatrix}- 2 & 5 & 1 \\ 0 & - 2 & 2 \\ 2 & - 1 & - 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 2 & 0 & 2 \\ 5 & - 2 & - 1 \\ 1 & 2 & - 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{4}\begin{bmatrix}- 2 & 0 & 2 \\ 5 & - 2 & - 1 \\ 1 & 2 & - 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}- 2 & 0 & 2 \\ 5 & - 2 & - 1 \\ 1 & 2 & - 1\end{bmatrix}\begin{bmatrix}6 \\ 7 \\ 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}- 12 + 0 + 24 \\ 30 - 14 - 12 \\ 6 - 14 - 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}12 \\ 4 \\ - 20\end{bmatrix}\]
\[ \Rightarrow x = \frac{12}{4}, y = \frac{4}{4}\text{ and }z = \frac{- 20}{4}\]
\[ \therefore x = 3, y = 1\text{ and }z = - 5\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.12 | पृष्ठ १४

संबंधित प्रश्‍न

Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.


If \[A = \begin{bmatrix}2 & 4 \\ 4 & 3\end{bmatrix}, X = \binom{n}{1}, B = \binom{ 8}{11}\]  and AX = B, then find n.

The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×