Advertisements
Advertisements
Question
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
Solution
Here,
3x − y + 2z = 0 ...(1)
4x + 3y + 3z = 0 ...(2)
5x + 7y + 4z = 0 ...(3)
The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}3 & - 1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4\end{bmatrix} \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here,
\[A = \begin{bmatrix}3 & - 1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}3 & - 1 & 2 \\ 4 & 3 & 3 \\ 5 & 7 & 4\end{vmatrix}\]
\[ = 3\left( 12 - 21 \right) + 1\left( 16 - 15 \right) + 2(28 - 15)\]
\[ = - 27 + 1 + 26\]
\[ = 0\]
\[\therefore\left| A \right|\neq0\]
So, the given systemof homogeneous equations has non-trivial solution.
Substituting z=k in eq. (1) & eq. (2), we get
\[3x - y = - 2k\text{ and }4x + 3y = - 3k\]
\[AX = B\]
Here,
\[A=\begin{bmatrix}3 & - 1 \\ 4 & 3\end{bmatrix}, X=\binom{x}{y}\text{ and }B = \binom{ - 2k}{ - 3k}\]
\[ \Rightarrow \begin{bmatrix}3 & - 1 \\ 4 & 3\end{bmatrix}\binom{x}{y} = \binom{ - 2k}{ - 3k}\]
\[\left| A \right|=\begin{vmatrix}3 & - 1 \\ 4 & 3\end{vmatrix}\]
\[=\left( 3 \times 3 + 4 \times 1 \right)\]
\[=13\]
\[\text{ So, }A^{- 1}\text{ exists .} \]
We have
\[adjA=\begin{bmatrix}3 & 1 \\ - 4 & 3\end{bmatrix}\]
\[ A^{- 1} =\frac{1}{\left| A \right|}adjA\]
\[ \Rightarrow A^{- 1} = \frac{1}{13}\begin{bmatrix}3 & 1 \\ - 4 & 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{13}\begin{bmatrix}3 & 1 \\ - 4 & 3\end{bmatrix}\binom{ - 2k}{ - 3k}\]
\[ = \frac{1}{13}\binom{ - 6k - 3k}{8k - 9k}\]
\[\text{ Thus, }x=\frac{- 9k}{13},y=\frac{- k}{13}\text{ and }z=k\left( \text{ wherekis any real number }\right)\text{ satisfy the given system of equations. }\]
APPEARS IN
RELATED QUESTIONS
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.