मराठी

Solve the Following System of Equations by Matrix Method: 3x + Y = 7 5x + 3y = 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12

उत्तर

The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}3 & 1 \\ 5 & 3\end{bmatrix} \binom{x}{y} = \binom{7}{12}\]
\[AX=B\]
Here,
\[A = \begin{bmatrix}3 & 1 \\ 5 & 3\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{7}{12}\]
Now,
\[\left| A \right| = \begin{bmatrix}3 & 1 \\ 5 & 3\end{bmatrix} \]
\[ = 9 - 5\]
\[ = 4 \neq 0\]
\[\text{ So, the given system has a unique solution given by }X = A^{- 1} B . \]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( 3 \right) = 3, C_{12} = \left( - 1 \right)^{1 + 2} \left( 5 \right) = - 5\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 1 \right) = - 1, C_{22} = \left( - 1 \right)^{2 + 2} \left( 3 \right) = 3\]
\[adj A = \begin{bmatrix}3 & - 5 \\ - 1 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}3 & - 1 \\ - 5 & 3\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{4}\begin{bmatrix}3 & - 1 \\ - 5 & 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ = \frac{1}{4}\begin{bmatrix}3 & - 1 \\ - 5 & 3\end{bmatrix}\binom{7}{12}\]
\[ = \frac{1}{4}\binom{21 - 12}{ - 35 + 36}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{9}{4}}{\frac{1}{4}}\]
\[ \therefore x = \frac{9}{4}\text{ and }y = \frac{1}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 1.6 | पृष्ठ १४

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


If A is a singular matrix, then write the value of |A|.

 

If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×