Advertisements
Advertisements
प्रश्न
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
उत्तर
A = `[[1,1,1],[0,1,3],[1,-2,1]]`
A11 = 7 , A12 = 3, A13 = -1
A21 = -3 , A22 = 0, A23 = +3
A31 = 2, A32 = -3, A33 = 1
|A| = 1(7) + 3 - 1= 9
`∴ A^(-1) = 1/|A| adj A`
` = 1/9[[7,-3,2],[3,0,-3],[-1,3,1]]`
Verification
AA-1 = I
`= 1/9[[1,1,1],[0,1,3],[1,-2,1]] xx [[7,-3,2],[3,0,-3],[-1,3,1]] `
`= 1/9[[9,0,0],[0,9,0],[0,0,9]]`
=I3
X +Y + Z = 6
0X + Y + 3Z = 11
X -2Y + Z = 0
`[[1,1,1],[0,1,3],[1,-2,1]] [ [X],[Y],[Z]] =[[6],[11],[0]]`
aX =b ⇒ x = A-1 b
`A^(-1) = 1/9 [[7,-3,2],[3,0,-3],[-1,3,1]] `
`∴ [[x],[y],[x]] =A^(-1)b`
`= 1/9 [[7,-3,2],[3,0,-3],[-1,3,1]] [[6],[11],[0]]`
`=1/9 [[42-33],[18],[-6+33]] =1/9 [[9],[18],[27]]`
`=[[1],[2],[3]]`
∴ x =1; y =2; z = 3
APPEARS IN
संबंधित प्रश्न
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Show that
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Prove that
2x + 3y = 10
x + 6y = 4
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
3x + y = 5
− 6x − 2y = 9
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.