Advertisements
Advertisements
प्रश्न
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
उत्तर
\[∆ = \begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix}\]
\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 & c^2 \\ a^2 & b^2 + c^2 & a^2 \\ b^2 & b^2 & c^2 + a^2\end{vmatrix} \left[\text{ Multiplying }R_1 , R_2 \text{ and }R_3\text{ by c, a and b and then dividing by abc }\right]\]
\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 - a^2 - b^2 & c^2 - a^2 - b^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }C_2\text{ to }C_2 - C_1\text{ and }C_3\text{ to }C_3 - C_1 \right]\]
\[ = \frac{1}{abc}\begin{vmatrix}0 & - 2 b^2 & - 2 a^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }R_1\text{ to }R_1 - R_2 - R_3 \right]\]
\[ = \frac{1}{abc}[ - a^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ 0 & c^2 + a^2 - b^2\end{vmatrix} + b^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ b^2 + c^2 - a^2 & 0\end{vmatrix} \left[\text{ Expanding along }C_1 \right]\]
\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 ( c^2 + a^2 - b^2 ) \right\} + b^2 \left\{ 0 + 2 a^2 \left( b^2 + c^2 - a^2 \right) \right\} \right]\]
\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 c^2 - 2 b^2 a^2 + 2 b^4 \right\} + b^2 \left\{ 2 a^2 b^2 + 2 a^2 c^2 - 2 a^4 \right\} \right]\]
\[ = \frac{1}{abc}\left[ 2 a^2 b^2 c^2 + 2 a^4 b^2 - 2 a^2 b^4 + 2 a^2 b^4 + 2 a^2 b^2 c^2 - 2 a^4 b^2 \right]\]
\[ = \frac{1}{abc}4 a^2 b^2 c^2 = 4abc\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
2x − y = 1
7x − 2y = −7
3x + y = 5
− 6x − 2y = 9
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
For what value of x, the following matrix is singular?
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
System of equations x + y = 2, 2x + 2y = 3 has ______
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.