Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
Solution
Here,
\[ A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\]
\[\left| A \right| = 1\left( - 1 - 2 \right) + 2\left( 2 \right)\]
\[ = - 3 + 4\]
\[ = 1\]
\[\text{ Let }C_{ij}\text{ be the cofactors of the elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 1 & - 2 \\ - 1 & 1\end{vmatrix} = - 3, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}- 2 & - 2 \\ 0 & 1\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}- 2 & - 1 \\ 0 & - 1\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}2 & 0 \\ - 1 & 1\end{vmatrix} = - 2, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 0 \\ 0 & 1\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 2 \\ 0 & - 1\end{vmatrix} = 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}2 & 0 \\ - 1 & - 2\end{vmatrix} = - 4, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 0 \\ - 2 & - 2\end{vmatrix} = 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 2 \\ - 2 & - 1\end{vmatrix} = 3\]
\[ \therefore adj A = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[\text{ We know that, }\left( A^T \right)^{- 1} = \left( A^{- 1} \right)^T . \]
\[\text{ Here, }C = A^T \]
\[i . e . , C = \begin{bmatrix}1 & - 2 & 0 \\ 2 & - 1 & - 1 \\ 0 & - 2 & 1\end{bmatrix}\]
\[ \therefore C^{- 1} = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}\]
\[\text{ or, }CX = B\]
\[\text{ where, }C = \begin{bmatrix}1 & - 2 & 0 \\ 2 & - 1 & - 1 \\ 0 & - 2 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
Now,
\[ \therefore X = C^{- 1} B\]
\[ \Rightarrow X = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}\begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix}- 30 + 16 + 14 \\ - 20 + 8 + 7 \\ - 40 + 16 + 21\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ - 5 \\ - 3\end{bmatrix}\]
\[ \therefore x = 0, y = - 5\text{ and }z = - 3 .\]
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
The value of the determinant
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.