मराठी

For the System of Equations: X + 2y + 3z = 1 2x + Y + 3z = 2 5x + 5y + 9z = 4 (A) There is Only One Solution (B) There Exists Infinitely Many Solution (C) There is No Solution (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4

पर्याय

  • there is only one solution

  • there exists infinitely many solution

  • there is no solution

  • none of these

MCQ

उत्तर

(a) there is only one solution
The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 2 \\ 4\end{bmatrix}\]
Here,
\[A=\begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{bmatrix},X=\begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}1 \\ 2 \\ 4\end{bmatrix}\]
Now, 
\[\left| A \right| = \begin{vmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{vmatrix}\]
\[ = 1\left( 9 - 15 \right) - 2\left( 18 - 15 \right) + 3\left( 10 - 5 \right)\]
\[ = - 6 - 6 + 15\]
\[ = 3 \neq 0\]
\[ \Rightarrow \left| A \right|\neq 0 \]
So, the given system of equations has a unique solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.4 | Q 8 | पृष्ठ २२

संबंधित प्रश्‍न

Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


Evaluate the following determinant:

\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]


If xyare different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is





Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×