मराठी

Using Determinants, Find the Equation of the Line Joining the Points (3, 1) and (9, 3) - Mathematics

Advertisements
Advertisements

प्रश्न

Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)

उत्तर

Given: A = (3, 1) and B = (9, 3)

Let the point P be (xy). So,
Area of triangle ABP = 0

=12|311931xy1|=0 
3(3y)1(9x)+1(9y3x)=0 
93y9+x+9y3x=0 
2x+6y=0 
x=3y 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.3 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.3 | Q 12.2 | पृष्ठ ७२

संबंधित प्रश्‍न

Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =32

3y – 5z = 9


Solve the system of linear equations using the matrix method.

x − y + 2z = 7

3x + 4y − 5z = −5

2x − y + 3z = 12


Evaluate the following determinant:

|671921391314812426|


Without expanding, show that the value of the following determinant is zero:

|82712351643|


Without expanding, show that the value of the following determinant is zero:

|6322121052|


Without expanding, show that the value of the following determinant is zero:

|0xyx0zyz0|


Without expanding, show that the value of the following determinant is zero:

|143673543172|


Without expanding, show that the value of the following determinant is zero:

|12223242223242523242526242526272|


Evaluate :

|1abc1bca1cab|


Evaluate the following:

|x111x111x|


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


x + 2y = 5
3x + 6y = 15


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


State whether the matrix 
[2364] is singular or non-singular.


Find the value of the determinant
[4200420142054203]


If A=[aij]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Write the value of  |a+ibc+idc+idaib|.


Evaluate: |cos15sin15sin75cos75|


If |2xx+32(x+1)x+1|=|1533|, then write the value of x.

 

 


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

|2aa+ba+cb+a2bb+cc+ac+b2c|
The other factor in the value of the determinant is


The value of |525354535455545556|

 


If xyare different from zero and |1+x1111+y1111+z|=0 , then the value of x−1 + y−1 + z−1 is





Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30


A=[120213021] and B=[726213425], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

If A=[2443],X=(n1),B=(811)  and AX = B, then find n.

Show that  |y+zxyz+xzxx+yyz|=(x+y+z)(xz)2

 

Write the value of |a-bb-cc-ab-cc-aa-bc-aa-bb-c|


If A = [1-1230-2103], verify that A(adj A) = (adj A)A


If |2x58x|=|6583|, then find x


If |2x58x|=|6-273|, then value of x is ______.


The value of λ, such that the following system of equations has no solution, is

2x-y-2z=-5

x-2y+z=2

x+y+λz=3


What is the nature of the given system of equations

x+2y=22x+3y=3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.