Advertisements
Advertisements
प्रश्न
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
उत्तर
\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]
\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]
\[\]
\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]
\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[\left( ii \right) \left( A + B \right)^T = A^T + B^T \]
\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} + \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[ \Rightarrow \left( \begin{bmatrix}2 + 1 & - 3 + 0 \\ - 7 + 2 & 5 - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 + 1 & - 7 + 2 \\ - 3 + 0 & 5 - 4\end{bmatrix}\]
\[ \Rightarrow \left( \begin{bmatrix}3 & - 3 \\ - 5 & 1\end{bmatrix} \right)^T = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix} = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]
\[ \therefore LHS = RHS\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If A=, find k such that A2 = kA − 2I2
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
For a 2 × 2 matrix A = [aij] whose elements are given by
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C