मराठी

Let `A =[[2,-3],[-7,5]]` and `B=[[1,0],[2,-4]]` Verify That (A + B)T = At + Bt - Mathematics

Advertisements
Advertisements

प्रश्न

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT

बेरीज

उत्तर

\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]

\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]

\[\]

\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]

\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[\left( ii \right) \left( A + B \right)^T = A^T + B^T \]

\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} + \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}2 + 1 & - 3 + 0 \\ - 7 + 2 & 5 - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 + 1 & - 7 + 2 \\ - 3 + 0 & 5 - 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}3 & - 3 \\ - 5 & 1\end{bmatrix} \right)^T = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix} = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]

\[ \therefore LHS = RHS\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.4 | Q 1.2 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Show that AB ≠ BA in each of the following cases:

`A=[[1       3         0],[1        1          0],[4         1         0]]`And    B=`[[0      1          0],[1        0        0],[0           5          1]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If A=, find k such that A2 = kA − 2I2

 

Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.

 

 


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to 


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×