English

Let `A =[[2,-3],[-7,5]]` and `B=[[1,0],[2,-4]]` Verify That (A + B)T = At + Bt - Mathematics

Advertisements
Advertisements

Question

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT

Sum

Solution

\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]

\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]

\[\]

\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]

\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[\left( ii \right) \left( A + B \right)^T = A^T + B^T \]

\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} + \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}2 + 1 & - 3 + 0 \\ - 7 + 2 & 5 - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 + 1 & - 7 + 2 \\ - 3 + 0 & 5 - 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}3 & - 3 \\ - 5 & 1\end{bmatrix} \right)^T = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix} = \begin{bmatrix}3 & - 5 \\ - 3 & 1\end{bmatrix}\]

\[ \therefore LHS = RHS\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.4 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.4 | Q 1.2 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Show that AB ≠ BA in each of the following cases:

`A=[[1       3         0],[1        1          0],[4         1         0]]`And    B=`[[0      1          0],[1        0        0],[0           5          1]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


If A=then find λ, μ so that A2 = λA + μI

 

Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices

A and B such that AB = O but BA ≠ O.


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If AB = A and BA = B, where A and B are square matrices,  then


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×