Advertisements
Advertisements
Question
Solution
\[Given: A = \begin{bmatrix}\sin\alpha & \cos\alpha \\ - \cos\alpha & \sin\alpha\end{bmatrix} \]
\[ A^T = \begin{bmatrix}\sin\alpha & - \cos\alpha \\ \cos\alpha & \sin\alpha\end{bmatrix}\]
\[Now, \]
\[ A^T A = \begin{bmatrix}\sin\alpha & - \cos\alpha \\ \cos\alpha & \sin\alpha\end{bmatrix}\begin{bmatrix}\sin\alpha & \cos\alpha \\ - \cos\alpha & \sin\alpha\end{bmatrix} \]
\[ \Rightarrow A^T A = \begin{bmatrix}\left( \sin\alpha \right)\left( \sin\alpha \right) + \left( - \cos\alpha \right)\left( - \cos\alpha \right) & \left( \sin\alpha \right)\left( \cos\alpha \right) + \left( - \cos\alpha \right)\left( \sin\alpha \right) \\ \left( \cos\alpha \right)\left( \sin\alpha \right) + \left( \sin\alpha \right)\left( - \cos\alpha \right) & \left( \cos\alpha \right)\left( \cos\alpha \right) + \left( \sin\alpha \right)\left( \sin\alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^T A = \begin{bmatrix}\sin^2 \alpha + \cos^2 \alpha & \sin\alpha \cos\alpha - \sin\alpha \cos\alpha \\ \sin\alpha \cos\alpha - \sin\alpha \cos\alpha & \cos^2 \alpha + \sin^2 \alpha\end{bmatrix}\]
\[ \Rightarrow A^T A = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = I\]
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(AB)T = BT AT
write AB.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
A square matrix where every element is unity is called an identity matrix.