English

If a = [ Sin α Cos α − Cos α Sin α ] , Verify that at a = I2. - Mathematics

Advertisements
Advertisements

Question

 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 
Sum

Solution

\[Given: A = \begin{bmatrix}\sin\alpha & \cos\alpha \\ - \cos\alpha & \sin\alpha\end{bmatrix} \] 

\[ A^T = \begin{bmatrix}\sin\alpha & - \cos\alpha \\ \cos\alpha & \sin\alpha\end{bmatrix}\] 

\[Now, \] 

\[ A^T A = \begin{bmatrix}\sin\alpha & - \cos\alpha \\ \cos\alpha & \sin\alpha\end{bmatrix}\begin{bmatrix}\sin\alpha & \cos\alpha \\ - \cos\alpha & \sin\alpha\end{bmatrix} \] 

\[ \Rightarrow A^T A = \begin{bmatrix}\left( \sin\alpha \right)\left( \sin\alpha \right) + \left( - \cos\alpha \right)\left( - \cos\alpha \right) & \left( \sin\alpha \right)\left( \cos\alpha \right) + \left( - \cos\alpha \right)\left( \sin\alpha \right) \\ \left( \cos\alpha \right)\left( \sin\alpha \right) + \left( \sin\alpha \right)\left( - \cos\alpha \right) & \left( \cos\alpha \right)\left( \cos\alpha \right) + \left( \sin\alpha \right)\left( \sin\alpha \right)\end{bmatrix}\] 

\[ \Rightarrow A^T A = \begin{bmatrix}\sin^2 \alpha + \cos^2 \alpha & \sin\alpha \cos\alpha - \sin\alpha \cos\alpha \\ \sin\alpha \cos\alpha - \sin\alpha \cos\alpha & \cos^2 \alpha + \sin^2 \alpha\end{bmatrix}\] 

\[ \Rightarrow A^T A = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = I\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.4 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.4 | Q 9 | Page 55

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


A square matrix where every element is unity is called an identity matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×