Advertisements
Advertisements
प्रश्न
उत्तर
\[Given: A = \begin{bmatrix}\sin\alpha & \cos\alpha \\ - \cos\alpha & \sin\alpha\end{bmatrix} \]
\[ A^T = \begin{bmatrix}\sin\alpha & - \cos\alpha \\ \cos\alpha & \sin\alpha\end{bmatrix}\]
\[Now, \]
\[ A^T A = \begin{bmatrix}\sin\alpha & - \cos\alpha \\ \cos\alpha & \sin\alpha\end{bmatrix}\begin{bmatrix}\sin\alpha & \cos\alpha \\ - \cos\alpha & \sin\alpha\end{bmatrix} \]
\[ \Rightarrow A^T A = \begin{bmatrix}\left( \sin\alpha \right)\left( \sin\alpha \right) + \left( - \cos\alpha \right)\left( - \cos\alpha \right) & \left( \sin\alpha \right)\left( \cos\alpha \right) + \left( - \cos\alpha \right)\left( \sin\alpha \right) \\ \left( \cos\alpha \right)\left( \sin\alpha \right) + \left( \sin\alpha \right)\left( - \cos\alpha \right) & \left( \cos\alpha \right)\left( \cos\alpha \right) + \left( \sin\alpha \right)\left( \sin\alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^T A = \begin{bmatrix}\sin^2 \alpha + \cos^2 \alpha & \sin\alpha \cos\alpha - \sin\alpha \cos\alpha \\ \sin\alpha \cos\alpha - \sin\alpha \cos\alpha & \cos^2 \alpha + \sin^2 \alpha\end{bmatrix}\]
\[ \Rightarrow A^T A = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = I\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated products
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If `A=[[0,0],[4,0]]` find `A^16`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.