Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
उत्तर
Given: ` A = [[cos x -sin x],[sin x cos x]]`
⇒ ` A^T = [[cos x sin x],[ -sin x cos x]]`
`A A^T =[[cos x -sin x],[sin x cos x]] [[cos x sin x],[ -sin x cos x]]`
`⇒A A^T =[[cos^2 x + sin^2 x cos x sin x - sin x cos x ] , [ cos x sin x - sin x cos x sin^2x+ cos^2x ]]`
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
If AB = A and BA = B, where A and B are square matrices, then
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A and B are two square matrices of the same order, then AB = BA.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal