Advertisements
Advertisements
प्रश्न
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
उत्तर
Given : A=`[[ 3,1],[-1,2]]`
`⇒A2= A A`
`⇒A^2=``[[ 3,1],[-1,2]]` `[[ 3,1],[-1,2]]`
`⇒A^2`=`[[9-1,3+2],[-3-2,-1+4]]`
`⇒A^2= ``[[8,5],[-5,3]]`
`A^2−5A+7I`
`⇒A^2−5A+7I=``[[8,5],[-5,3]]-5[[3,1],[-1,2]]+7[[1,0],[0,1]]`
`⇒A^2−5A+7I=` `[[8,5],[-5,3]]-[[15,5],[-5,10]]+[[7,0],[0,7]]`
`⇒A^2−5A+7I=` `[[8-15+7,5-5+0],[-5+5+0,3-10+7]]`
`⇒A^2−5A+7I=` `[[0,0],[0,0]]=0`
Hence proved.
Given: `A^2−5A+7I=0`
`⇒A^2=5A−7I` ...(1)
`⇒A^3=A(5A−7I)` (Multilpying by A on both sides)
`⇒A^3=5A^2−7AI`
`⇒A^3=5(5A−7I)−7A` [From eq. (1)]
`⇒A^3=25A−35I−7A`
`⇒A^3=18A−35I`
`⇒A^4=(18A−35I)`A (Multilpying by A on both sides)
`⇒A^4=18A^2−35A`
`⇒A^4=18(5A−7I)−35A` [From eq. (1)]
`⇒A^4=90A−126I−35A`
`⇒A^4=55A−126I`
`⇒A^4=55``[[3,1],[-1,2]]-126` `[[1,0],[0,1]]`
`⇒A^4= ``[[165,55],[-55,110]]-[[126,0],[0,126]]`
`⇒A^4=``[[165-126,55-0],[-55-0,110-126]]`
`⇒A4= ``[[39,55],[-55,-16]]`
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
If `A=[[0,0],[4,0]]` find `A^16`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If AB = A and BA = B, where A and B are square matrices, then
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A and B are square matrices of the same order, then (AB)′ = ______.