मराठी

If A= `[[ 3 1],[-1 2]]` Show That A2 − 5a + 7i = O Use this to Find A4. - Mathematics

Advertisements
Advertisements

प्रश्न

\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.

बेरीज

उत्तर

Given : A=`[[ 3,1],[-1,2]]` 

`⇒A2= A A`

`⇒A^2=``[[ 3,1],[-1,2]]` `[[ 3,1],[-1,2]]`

`⇒A^2`=`[[9-1,3+2],[-3-2,-1+4]]`

`⇒A^2= ``[[8,5],[-5,3]]`

`A^2−5A+7I`

`⇒A^2−5A+7I=``[[8,5],[-5,3]]-5[[3,1],[-1,2]]+7[[1,0],[0,1]]`

`⇒A^2−5A+7I=` `[[8,5],[-5,3]]-[[15,5],[-5,10]]+[[7,0],[0,7]]`

`⇒A^2−5A+7I=` `[[8-15+7,5-5+0],[-5+5+0,3-10+7]]`

`⇒A^2−5A+7I=` `[[0,0],[0,0]]=0`

Hence proved.

Given: `A^2−5A+7I=0`

`⇒A^2=5A−7I`               ...(1)

`⇒A^3=A(5A−7I)`         (Multilpying by A on both sides)

`⇒A^3=5A^2−7AI`

`⇒A^3=5(5A−7I)−7A`        [From eq. (1)]

`⇒A^3=25A−35I−7A`

`⇒A^3=18A−35I`

`⇒A^4=(18A−35I)`A         (Multilpying by A on both sides)

`⇒A^4=18A^2−35A`

`⇒A^4=18(5A−7I)−35A`     [From eq. (1)]

`⇒A^4=90A−126I−35A`

`⇒A^4=55A−126I`

`⇒A^4=55``[[3,1],[-1,2]]-126` `[[1,0],[0,1]]`

`⇒A^4= ``[[165,55],[-55,110]]-[[126,0],[0,126]]`

`⇒A^4=``[[165-126,55-0],[-55-0,110-126]]`

`⇒A4= ``[[39,55],[-55,-16]]`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 34 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


If A=then find λ, μ so that A2 = λA + μI

 

Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


If `A=[[0,0],[4,0]]` find `A^16`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


If AB = A and BA = B, where A and B are square matrices,  then


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If A and B are square matrices of the same order, then (AB)′ = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×