मराठी

Let `A =[[2,-3],[-7,5]]` and `B=[[1,0],[2,-4]]` Verify That (A − B)T = At − Bt - Mathematics

Advertisements
Advertisements

प्रश्न

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT

बेरीज

उत्तर

\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]

\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]

\[\]

\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]

\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[\left( iii \right) \left( A - B \right)^T = A^T - B^T \]

\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} - \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} - \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}2 - 1 & - 3 - 0 \\ - 7 - 2 & 5 + 4\end{bmatrix} \right)^T = \begin{bmatrix}2 - 1 & - 7 - 2 \\ - 3 - 0 & 5 + 4\end{bmatrix}\]

\[ \Rightarrow \left( \begin{bmatrix}1 & - 3 \\ - 9 & 9\end{bmatrix} \right)^T = \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix} = \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix}\]

\[ \therefore LHS = RHS\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.4 | Q 1.3 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


Evaluate the following:

`[[],[1  2  3],[]]` `[[1     0      2],[2       0         1],[0          1       2]]` `[[2],[4],[6]]`


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


If A=, find k such that A2 = kA − 2I2

 

Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If f (x) = x2 − 2x, find f (A), where A=


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


What is the total number of 2 × 2 matrices with each entry 0 or 1?


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


A matrix which is not a square matrix is called a ______ matrix.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×