Advertisements
Advertisements
Question
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Solution
\[Given: \hspace{0.167em} A = \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix}\]
\[ A^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix}\]
\[\]
\[B = \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \]
\[ B^T = \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[\left( iii \right) \left( A - B \right)^T = A^T - B^T \]
\[ \Rightarrow \left( \begin{bmatrix}2 & - 3 \\ - 7 & 5\end{bmatrix} - \begin{bmatrix}1 & 0 \\ 2 & - 4\end{bmatrix} \right)^T = \begin{bmatrix}2 & - 7 \\ - 3 & 5\end{bmatrix} - \begin{bmatrix}1 & 2 \\ 0 & - 4\end{bmatrix}\]
\[ \Rightarrow \left( \begin{bmatrix}2 - 1 & - 3 - 0 \\ - 7 - 2 & 5 + 4\end{bmatrix} \right)^T = \begin{bmatrix}2 - 1 & - 7 - 2 \\ - 3 - 0 & 5 + 4\end{bmatrix}\]
\[ \Rightarrow \left( \begin{bmatrix}1 & - 3 \\ - 9 & 9\end{bmatrix} \right)^T = \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix} = \begin{bmatrix}1 & - 9 \\ - 3 & 9\end{bmatrix}\]
\[ \therefore LHS = RHS\]
APPEARS IN
RELATED QUESTIONS
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
If A=, find k such that A2 = kA − 2I2
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
If f (x) = x2 − 2x, find f (A), where A=
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
write AB.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
For a 2 × 2 matrix A = [aij] whose elements are given by
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If AB = A and BA = B, where A and B are square matrices, then
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.