Advertisements
Advertisements
Question
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
Solution
\[\left( v \right) \begin{bmatrix}2 & - 1 \\ 1 & 0 \\ - 3 & 4\end{bmatrix}A = \begin{bmatrix}- 1 & - 8 & - 10 \\ 1 & - 2 & - 5 \\ 9 & 22 & 15\end{bmatrix}\]
\[Let A = \begin{bmatrix}x & y & z \\ a & b & c\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 0 \\ - 3 & 4\end{bmatrix}\begin{bmatrix}x & y & z \\ a & b & c\end{bmatrix} = \begin{bmatrix}- 1 & - 8 & - 10 \\ 1 & - 2 & - 5 \\ 9 & 22 & 15\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2x - a & 2y - b & 2z - c \\ x & y & z \\ - 3x + 4a & - 3y + 4b & - 3z + 4c\end{bmatrix} = \begin{bmatrix}- 1 & - 8 & - 10 \\ 1 & - 2 & - 5 \\ 9 & 22 & 15\end{bmatrix}\]
By comparing the elements of second row, we get
\[x = 1, y = - 2, z = - 5\]
By comparing the elements of first row, we get
\[2x - a = - 1\]
\[ \Rightarrow 2 - a = - 1\]
\[ \Rightarrow a = 3\]
\[Also, \]
\[2y - b = - 8\]
\[ \Rightarrow - 4 - b = - 8\]
\[ \Rightarrow b = 4\]
\[And, \]
\[2z - c = - 10\]
\[ \Rightarrow - 10 - c = - 10\]
\[ \Rightarrow c = 0\]
\[ \therefore A = \begin{bmatrix}1 & - 2 & - 5 \\ 3 & 4 & 0\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated products
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
If f (x) = x2 − 2x, find f (A), where A=
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
If `A=[[0,0],[4,0]]` find `A^16`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If AB = A and BA = B, where A and B are square matrices, then
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.