English

For the Following Matrices Verify the Distributivity of Matrix Multiplication Over Matrix Addition I.E. A (B + C) = Ab + Ac: `A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]` - Mathematics

Advertisements
Advertisements

Question

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`

Sum

Solution

LaTeX

\[\left( ii \right) \]
\[A\left( B + C \right) = AB + AC\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\left( \begin{bmatrix}0 & 1 \\ 1 & 1\end{bmatrix} + \begin{bmatrix}1 & - 1 \\ 0 & 1\end{bmatrix} \right) = \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 1\end{bmatrix} + \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}1 & - 1 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}0 + 1 & 1 - 1 \\ 1 + 0 & 1 + 1\end{bmatrix} = \begin{bmatrix}0 - 1 & 2 - 1 \\ 0 + 1 & 1 + 1 \\ 0 + 2 & - 1 + 2\end{bmatrix} + \begin{bmatrix}2 - 0 & - 2 - 1 \\ 1 + 0 & - 1 + 1 \\ - 1 + 0 & 1 + 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}1 & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}- 1 & 1 \\ 1 & 2 \\ 2 & 1\end{bmatrix} + \begin{bmatrix}2 & - 3 \\ 1 & 0 \\ - 1 & 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 - 1 & 0 - 2 \\ 1 + 1 & 0 + 2 \\ - 1 + 2 & 0 + 4\end{bmatrix} = \begin{bmatrix}- 1 + 2 & 1 - 3 \\ 1 + 1 & 2 + 0 \\ 2 - 1 & 1 + 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 2 \\ 2 & 2 \\ 1 & 4\end{bmatrix} = \begin{bmatrix}1 & - 2 \\ 2 & 2 \\ 1 & 4\end{bmatrix}\]
\[ \therefore LHS = RHS\]
Hence proved .
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 17.2 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If A=then find λ, μ so that A2 = λA + μI

 

If f (x) = x2 − 2x, find f (A), where A=


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If AB = A and BA = B, where A and B are square matrices,  then


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


A square matrix where every element is unity is called an identity matrix.


If A and B are two square matrices of the same order, then AB = BA.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×