English

If A =[1334] and A2 − kA − 5I = 0, then the value of k is ______. - Mathematics

Advertisements
Advertisements

Question

If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.

Options

  • 5

  • 3

  • 7

  • 9

MCQ
Fill in the Blanks

Solution

If A `= [(1,3),(3,4)]` and A2 - KA - 5I = 0, then K = 5.

Explanation:

Given,

`A = [(1,3),(3,4)]`

A2 = A.A

`=[(1,3),(3,4)] [(1,3),(3,4)]`

`= [((1)(1)+(3)(3),(1)(3)+(3)( 4)),((3)(1) + ( 4)(3),(3)(3) + ( 4)( 4))]`

`= [(1+9,3+12),(3+12,9+16)]`

`= [(10,15),(15,25)]`

Now, A2 − KA − 5I = 0 [Given]

`[(10,15),(15,25)]-k[(1,3),(3,4)]-5[(1,0),(0,1)]=[(0,0),(0,0)]`

`[(10-k-5,15-3k-0),(15-3k-0,25-4k-5)]=[(0,0),(0,0)]`

`[(5-k,15-3k),(15-3k,20-4k)]=[(0,0),(0,0)]`

On comparing

5 − k = 0

∴ k = 5

OR 15 - 3k = 0

∴ k = 5

OR 20 - 4k = 0

Hence, k = 5

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Outside Delhi Set - 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×