Advertisements
Advertisements
Question
If `e^(x^2y)` = c, then `dy/dx` is ______.
Options
`(xe^(x^2y))/(2y)`
`(-2y)/x`
`(2y)/x`
`x/(2y)`
MCQ
Fill in the Blanks
Solution
If `e^(x^2y)` = c, then `dy/dx` is `underlinebb((-2y)/x)`.
Explanation:
Given, `e^(x^2y)` = C
d.w.r to x
`d/dx(e^(x^2y))=d/dx C`
`e^(x^2y) [x^2 dy/dx+y(2x)]=0`
`x^2e^(x^2y) dy/dx+2 xy e^(x^2y)=0`
`x^2e^(x^2y) dy/dx= -2xy e^(x^2y)`
`dy/dx = (-2xye^(x^2y))/(x^2e^(x^2y))`
`dy/dx = (-2y)/x`
shaalaa.com
Is there an error in this question or solution?