Advertisements
Advertisements
Question
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
Options
`[[0,I],[I,0]]`
`[[0,0],[0,0]]`
`[[1,0],[0,1]]`
`[[0,I],[I,0]]`
Solution
`[[1 0],[0 1]]`
\[Here, \]
\[A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix} = \begin{bmatrix}i^2 & 0 \\ 0 & i^2\end{bmatrix}\]
\[ \Rightarrow A^3 = A^2 . A = \begin{bmatrix}i^2 & 0 \\ 0 & i^2\end{bmatrix}\begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix} = \begin{bmatrix}- i & 0 \\ 0 & - i\end{bmatrix}\]
\[ \Rightarrow A^4 = A^3 . A = \begin{bmatrix}- i & 0 \\ 0 & - i\end{bmatrix}\begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
So,
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If A=, find k such that A2 = kA − 2I2
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn