Advertisements
Advertisements
Question
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Solution
\[\left( iv \right) Let A = \begin{bmatrix}x\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & 1 & 3\end{bmatrix}\begin{bmatrix}- 1 & 0 & - 1 \\ - 1 & 1 & 0 \\ 0 & 1 & 1\end{bmatrix}\begin{bmatrix}1 \\ 0 \\ - 1\end{bmatrix} = A\]
\[ \Rightarrow \begin{bmatrix}2 & 1 & 3\end{bmatrix}\begin{bmatrix}- 1 & 0 & - 1 \\ - 1 & 1 & 0 \\ 0 & 1 & 1\end{bmatrix}\begin{bmatrix}1 \\ 0 \\ - 1\end{bmatrix} = \begin{bmatrix}x\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 2 - 1 + 0 & 0 + 1 + 3 & - 2 + 0 + 3\end{bmatrix}\begin{bmatrix}1 \\ 0 \\ - 1\end{bmatrix} = \begin{bmatrix}x\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 3 & 4 & 1\end{bmatrix}\begin{bmatrix}1 \\ 0 \\ - 1\end{bmatrix} = \begin{bmatrix}x\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 3 + 0 - 1\end{bmatrix} = \begin{bmatrix}x\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 4\end{bmatrix} = \begin{bmatrix}x\end{bmatrix}\]
The corresponding elements of two equal matrices are equal .
\[ \therefore x = - 4 \]
\[ \therefore A = \left[ - 4 \right]\]
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
If
If A=, find k such that A2 = kA − 2I2
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Give examples of matrices
A and B such that AB ≠ BA
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If A and B are square matrices of the same order, then (AB)′ = ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C