Advertisements
Advertisements
Question
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
Solution
(AB)C=A(BC)
`⇒ ([[4 2 3],[1 1 2],[3 0 1]][[1 -1 1],[0 1 2],[2 -1 1]])` `[[1 2 -1],[3 0 1],[0 0 1]]=[[4 2 3],[1 1 2],[3 0 1]]` `([[1 -1 1],[0 1 2],[2 -1 1]] [[1 2 -1],[3 0 1],[0 0 1]])`
`⇒([[4+0+6 -4+2-3 4+4+3],[1+0+4 -1+1-2 1+2+2],[3+0+2 -3+0-1 3+0+1]])` `[[1 2 -1],[3 0 1],[0 0 1]]=[[4 2 3],[1 1 2],[3 0 1]]` `([[1-3+0 2-0+0 -1-1+1],[0+3+0 0+0+0 0+1+2],[2-3+0 4-0+0 -2-1+1]])`
⇒`[[10 -5 11],[5 -2 5],[5 -4 4]] [[1 2 -1],[3 0 1],[0 0 1]]=[[4 2 3],[1 1 2],[3 0 1]] [[-2 2 -1],[3 0 3],[-1 4 -2]]`
⇒`[[10-15+0 20-0+0 -10-5+11],[5-6+0 10-0+0 -5-2+5],[5-12+0 10-0+0 -5-4+4 ]]=[[-8+6-3 8+0+12 -4+6-6],[-2+3-2 2+0+8 -1+3-4],[-6+0-1 6+0+4 -3+0-2]]`
⇒`[[-5 20 -4],[-1 10 -2],[-7 10 -5]]` = `[[-5 20 -4],[-1 10 -2],[-7 10 -5]]`
∴ LHS=RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated products
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Give examples of matrices
A and B such that AB ≠ BA
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\]
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
A matrix which is not a square matrix is called a ______ matrix.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money (in Rs.) collected by schools CVC and KVS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?